On the Effects of Thermal History on the Development and Relaxation of Thermo-Mechanical Stress in Cryopreservation.
نویسندگان
چکیده
This study investigates the effects of the thermal protocol on the development and relaxation of thermo-mechanical stress in cryopreservation by means of glass formation, also known as vitrification. The cryopreserved medium is modeled as a homogeneous viscoelastic domain, constrained within either a stiff cylindrical container or a highly compliant bag. Annealing effects during the cooling phase of the cryopreservation protocol are analyzed. Results demonstrate that an intermediate temperature-hold period can significantly reduce the maximum tensile stress, thereby decreasing the potential for structural damage. It is also demonstrated that annealing at temperatures close to glass transition significantly weakens the dependency of thermo-mechanical stress on the cooling rate. Furthermore, a slower initial rewarming rate after cryogenic storage may drastically reduce the maximum tensile stress in the material, which supports previous experimental observations on the likelihood of fracture at this stage. This study discusses the dependency of the various stress components on the storage temperature. Finally, it is demonstrated that the stiffness of the container wall can affect the location of maximum stress, with implications on the development of cryopreservation protocols.
منابع مشابه
Non-linear Thermo-mechanical Bending Behavior of Thin and Moderately Thick Functionally Graded Sector Plates Using Dynamic Relaxation Method
In this study, nonlinear bending of solid and annular functionally graded (FG) sector plates subjected to transverse mechanical loading and thermal gradient along the thickness direction is investigated. Material properties are varied continuously along the plate thickness according to power-law distribution of the volume fraction of the constituents. According to von-Karman relation for large ...
متن کاملNon-Axisymmetric Time-Dependent Creep Analysis in a Thick-Walled Cylinder Due to the Thermo-mechanical loading
In this study, the non-linear creep behaviour of a thick-walled cylinder made of stainless steel 316 is investigated using a semi-analytical method. The thick-walled cylinder is under a uniform internal pressure and a non-axisymmetric thermal field as a function of the radial and circumferential coordinates. For the high temperature and stress levels, creep phenomena play a major role in stress...
متن کاملEvaluation of Thermo-mechanical stress in work rolls of ring rolling mill under thermal and mechanical loading
The defect in work rolls directly influence the forming cost and the final shape of the product. The researchers tend to investigate the thermo-mechanical stress in work roll of rolling machines. These stresses may reduce the roll life. Since the investigation of the thermo-mechanical stress in work roll with real-conditions is complex, comprehensive studies by means of numerical methods are av...
متن کاملStress Analysis of Rotating Thick Truncated Conical Shells with Variable Thickness under Mechanical and Thermal Loads
In this paper, thermo-elastic analysis of a rotating thick truncated conical shell subjected to the temperature gradient, internal pressure and external pressure is presented. Given the existence of shear stress in the conical shell due to thickness change along the axial direction, the governing equations are obtained based on first-order shear deformation theory (FSDT). These equations are so...
متن کاملThermal barrier coating effect on stress and temperature distribution of diesel engines cylinder heads using a two-layer viscoelasticity model with considering viscosity effects
This paper presents finite element analysis (FEA) of a coated and uncoated cylinder heads of a diesel engine to examine the distribution of temperature and stress. A thermal barrier coating system was applied on the combustion chamber of the cylinder heads, consists of two-layer systems: a ceramic top coat (TC), made of yttria stabilized zirconia (YSZ), ZrO2-8%Y2O3 and also a metallic bond coat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cryogenics
دوره 64 شماره
صفحات -
تاریخ انتشار 2014